Yilgarn Operations

Koolyanobbing Range F Deposit

Tetrathea erubescens
Environmental Offsets Plan

May 2016
This report should be cited as:

Acknowledgement

The assistance and contributions of staff from Cliffs Asia Pacific Iron Ore Pty Ltd in preparing this report is acknowledged and appreciated.

Limitations

This report has been prepared by Globe Environments Australia Pty Ltd for the exclusive use of the Client, for the sole purpose stated in the report title. Globe Environments Australia Pty Ltd has prepared this report in a manner consistent with the normal level of care and expertise exercised by members of the environmental services profession. In preparing this report, Globe Environments Australia Pty Ltd has relied on information provided by the Client, as well as other publicly available contextual information, all of which is presumed accurate and complete on receipt. Globe Environments Australia Pty Ltd makes no warranty and accepts no liability for the use of this report by persons other than the Client or for use of this report in excess of its stated purpose.
Contents

1 The Proposal 5
 1.1 The Proponent 5
 1.2 The Proposal 5
 1.3 Tetratheca erubescens 5
 1.4 Effect of Proposal to Tetratheca erubescens 6
 1.5 Legislative Framework for Rare Flora 7
 1.6 Government Assessment and Approval Processes 7
 1.6.1 Environmental Protection Act 1986 (WA) 7
 1.6.2 Wildlife Conservation Act 1950 (WA) 7

2 Mitigation Hierarchy 12
 2.1 Avoid 12
 2.2 Minimise 13
 2.3 Rehabilitate 13
 2.4 Offsets 13

3 Environmental Offsets 14
 3.1 Proposed Offsets 14
 3.2 Objectives 14
 3.3 Alignment to Policy 15
 3.4 Schedule 15
 3.5 Governance 16
 3.6 Finance 16
 3.7 Risk Management 16
 3.8 Monitoring 17
 3.9 Reporting 17

4 Stakeholder Consultation 18
 4.1 Environmental Protection Authority / Office of the EPA 18
 4.2 Department of Parks and Wildlife 18
 4.3 Community Consultation 18

5 References 19

Tables
 3-1 Tetratheca erubescens Recovery Plan Schedule 15
 3-2 Tetratheca erubescens Recovery Plan Financial Provisions 16
 3-3 Tetratheca erubescens Recovery Plan Reporting Schedule 17
Figures

1-1 Recorded Locations of Tetratheca erubescens and the Proposal 9
1-2 Recorded Locations of Tetratheca erubescens and the Proposal 10
1-3 Tetratheca erubescens Regional Location and Images 11
1-4 Tetratheca erubescens Habitat 11
1-5 Tetratheca erubescens Habitat 12
1 The Proposal

1.1 The Proponent

Cliffs Asia Pacific Iron Ore Pty Ltd (Cliffs) is a supplier of Western Australian iron ore, with mine operations in the Yilgarn region at the Koolyanobbing Range, Mt Jackson Range and Windarling Range, processing of ore at Koolyanobbing, and road and rail facilities between these operations and the Port of Esperance where the processed ore is exported to international customers.

Cliffs’ mine operations are undertaken in accordance with an Environmental Policy (Cliffs Natural Resources 2014), which outlines Cliffs’ overarching objectives of environmental protection and continual improvement in environmental performance. The Environmental Policy is implemented through Cliffs’ Environmental Management System (EMS), which includes Environmental Management Plans (EMPs) for the management of key environmental aspects. Cliffs’ EMS for its Yilgarn Operations is certified and maintained to the Australian and New Zealand Standard (AS/NZS) International Standards Organisation (ISO) 14001:2004 standard (NCSI 2013).

1.2 The Proposal

Cliffs proposes to extend its Koolyanobbing Range mine operations to include a new mine development at the Koolyanobbing Range F Deposit, located approximately 5km south-east of Cliffs’ existing Koolyanobbing Range mine operations (“The Proposal”). The Proposal will allow access to an estimated 8 million tonnes of high-grade hematite iron ore from the Koolyanobbing Range F Deposit.

The Proposal includes the following mine infrastructure components:

(a) Mine Pits;
(b) Waste Rock Landform; and
(c) Support Infrastructure.

The above infrastructure components will be positioned within an area of approximately 200 hectares.

In July 2014, Cliffs (2014a) submitted the Proposal to the Environmental Protection Authority (EPA) for environmental assessment in accordance with the Environmental Protection Act 1986 (WA). In September, EPA (2014a) determined the Proposal should be subject to an Environmental Impact Assessment (EIA) assessment at the level of Public Environmental Review (PER). As outlined by Cliffs (2014a) and EPA (2014a), the key environmental factors relevant to the EIA of the Proposal include “Flora and Vegetation”, with the key integrating factor of ‘Offsets’ also relevant for consideration of the environmental effect to the “Rare Flora” taxon Tetratheca erubescens.

The recorded locations of the Proposal and the Tetratheca erubescens population are identified by Figures 1-1 and 1-2.

1.3 Tetratheca erubescens

As outlined by Bull (2007), Tetratheca erubescens is a low, tangled shrub growing to 0.5m height and 1.5m width, glaucous to greyish-green in overall appearance, decumbent (draping) to erect with woody stock, with the flowers coloured white with pink flecks to entirely mauve. Tetratheca erubescens occupies small rock crevices containing red sandy loam soils on steep ironstone ridge faces and upper rocky slopes. Tetratheca erubescens has been recorded only from the southern Koolyanobbing Range.
Tetratheca erubescens was declared as “Rare Flora” under the Wildlife Conservation Act 1950 (WA) in June 2006 (WA Minister for Environment 2006). The declaration of Tetratheca erubescens as Rare Flora was based upon an assessment by the Department of Parks and Wildlife (DPaW) (2004) using the criteria of the International Union for Conservation of Nature (IUCN) (2001). The criteria of the IUCN are used internationally as the standard for assessing the conservation status of flora and fauna taxa. The DPaW assessment identified that Tetratheca erubescens met the category of “Vulnerable” due to its naturally restricted area of occupancy (<2km²) and low number of locations (1 location).

Based on the results of the Tetratheca erubescens census outlined in Maia (2013), and subsequent opportunistic records collected by Cliffs (2014 unpublished data) and Woodman (2014 unpublished data), a total population of 6,333 Tetratheca erubescens individuals have been recorded.

The location of the Tetratheca erubescens population at the southern Koolyanobbing Range in the vicinity of the Proposal is identified by Figures 1-1 and 1-2. The regional distribution of Tetratheca erubescens in Western Australia, and images of Tetratheca erubescens form, flowers and seed pod, are provided in Figure 1-3. Images identifying the typical habitat of Tetratheca erubescens are provided in Figure 1-4 and Figure 1-5.

1.4 Effect of Proposal to Tetratheca erubescens

The Mine Pits component of the Proposal area coincides with part of the Tetratheca erubescens population. As the ore resource is spatially fixed (and as such, the location of the Mine Pits is fixed), removal of part of the Tetratheca erubescens population by the Proposal is unavoidable.

The proposal consists of two stages of mine development:

(1) Stage 1 - Development of the central and southern Mine Pits (F2 and F3), resulting in the removal of up to 5% (313 individuals) of the Tetratheca erubescens population; and

(2) Stage 2 – Subject to demonstration of ‘proof of concept’ for establishing new individuals of Tetratheca erubescens at the Koolyanobbing Range, development of a northern Mine Pit (F1) resulting in removal of up to a further 10% (652 individuals) of the Tetratheca erubescens population.

Figure 1.2 shows the layout for Stage 1 and Stage 2 for the Proposal in relation to the Tetratheca erubescens population.

The total number of Tetratheca erubescens within the Proposal boundary is 965 individuals. The Mine Pits are expected to directly remove 874 individuals. A further 91 individuals of Tetratheca erubescens occur within a 10m set-back around the outer edge of the Mine Pits that may (or may not) be removed.

Cliffs (2014b) has assessed the effect of the Proposal to the Tetratheca erubescens population using the criteria of the IUCN (2012). The IUCN (2012) criteria are used internationally as the standard for assessing the conservation status of flora and fauna taxa, including by DPaW in its assessment of Rare Flora under the Wildlife Conservation Act 1950 (WA) (for example, as per DPaW 2004). As outlined by the Cliffs (2014b) assessment, the effect of the Proposal is not expected to change the threatened taxa category of “Vulnerable” currently applying to Tetratheca erubescens under the IUCN (2012) criteria.

Whilst the removal of up to approximately 15% of the Tetratheca erubescens population is not expected to change the current threat category ranking, the environmental effect of the Proposal may still be considered a significant residual environmental effect; leading towards a need to consider the applicability of the EPA (2013) key integrating factor of “Offsets”.
Environmental offsets are actions that provide environmental benefits to counterbalance a significant residual environmental effect or risk of a project or activity (Government of WA 2014; EPA 2014b). Environmental offsets should also seek to build-upon existing conservation programs or initiatives, where possible (Government of Western Australia 2011).

1.5 Legislative Framework for Rare Flora

Flora species may be afforded special protection under the Wildlife Conservation Act 1950 (WA) as “Rare Flora” through a declaration by the Western Australian Minister for Environment. Rare Flora are classified on the basis of being likely to become extinct, rare, or otherwise in need of special protection, and may be allocated a category of either “extant taxa” or “taxa presumed to be extinct” (WA Minister for Environment 2013), with the assessment process for the extant taxa having consideration of the criteria of IUCN (2012) for the categories of “critically endangered”, “endangered” or “vulnerable” (DPaW 2013).

The DPaW hold the statutory responsibility for the administration of the Wildlife Conservation Act 1950 (WA), and by virtue, hold responsibility for the coordination of Rare Flora management within Western Australia. In accordance with the DPaW Policy Statement 44 Wildlife Management Programs (DPaW 1992), the coordination of the management of Rare Flora taxa by DPaW is undertaken through the framework of Recovery Plans (also termed Wildlife Management Programs). The DPaW currently do not have a Recovery Plan for Tetratheca erubescens.

1.6 Government Assessment and Approval Processes

The environmental effect of the Proposal to individuals of the Tetratheca erubescens population will be subject to assessment under both the Environmental Protection Act 1986 (WA) and the Wildlife Conservation Act 1950 (WA), as outlined below:

1.6.1 Environmental Protection Act 1986 (WA)

The Environmental Protection Act 1986 (WA) identifies that a Proposal that is likely to have a significant effect on the environment may be referred to EPA, with EPA to report and recommend to the Minister for Environment as to whether a Proposal should be approved.

In July 2014, Cliffs (2014a) referred the Proposal to EPA under s38(1) of the Environmental Protection Act 1986 (WA). In September 2014, EPA (2014a) determined the Proposal should be subject to an EIA at the PER level. The EIA-PER document (Cliffs 2015) was released for public review in September 2015.

The EIA-PER assessment documentation included an assessment of the Proposal relevant to the key environmental factor of “Flora and Vegetation”, and further, consideration of the key integrating factor of “Offsets” with regard to the environmental effect to Tetratheca erubescens. The previous version of the Tetratheca erubescens Offsets Plan (Revision C) was included in the EIA-PER document. The Tetratheca erubescens Offsets Plan has been revised following public submissions and subsequent modifications to the Proposal.

1.6.2 Wildlife Conservation Act 1950 (WA)

As outlined by Section 1.5 Legislative Framework for Rare Flora, the Wildlife Conservation Act 1950 (WA) provides for the declaration and management of “Rare Flora” taxa, and is regulated by DPaW. The Wildlife Conservation Act 1950 (WA) requires, inter alia, that a Licence from the Minister for Environment (or as delegated to DPaW) must be held for the removal (taking) of any Rare Flora taxa.
As outlined by Section 1.4 *Effect of Proposal to Tetratheca erubescens*, the Proposal coincides with the Rare Flora taxon *Tetratheca erubescens*. Implementation of the Proposal will result in the removal of up to approximately 15% of the *Tetratheca erubescens* population.

Cliffs will prepare and submit an application to DPaW for a Licence to take the *Tetratheca erubescens* individuals to allow for implementation of the Proposal.
Figure 1-1 Recorded Locations of Tetratheca erubescens and the Proposal. The location of the Proposal is identified in yellow. The recorded locations of the Rare Flora (R) taxon Tetratheca erubescens in the vicinity of the Proposal are identified. Data Sources: Maia (2013), Woodman (unpublished) and Cliffs (unpublished).
Figure 1-2 Recorded Locations of *Tetratheca erubescens* and the Proposal. The location of the Proposal is identified in yellow. Stages 1 and 2 of the Proposal are indicated. The recorded locations of the Rare Flora (R) taxon *Tetratheca erubescens* in the vicinity of the Proposal are identified. Data Sources: Maia [2013], Woodman (unpublished) and Cliffs (unpublished).
Figure 1-3 *Tetratheca erubescens* Regional Location and Images. Image 1: The regional distribution of *Tetratheca erubescens* is identified by the green circle (adapted from DPaW 2014). Image 2: *Tetratheca erubescens* flower in mauve (Globe Environments 2014 unpublished). Image 3: *Tetratheca erubescens* seed pod (Globe Environments 2014 unpublished). Image 4: *Tetratheca erubescens* “erect” form, showing new growth (green) with white flowers, with retained dead material (grey) also visible (Woodman 2014).

Figure 1-4 *Tetratheca erubescens* Habitat. Image 1: *Tetratheca erubescens* habitat on ironstone ridge face at the southern Koolyanobbing Range, with approximately 24 individuals identified by yellow arrows, with individuals showing an “erect” form (Globe Environments 2009 unpublished). Image 2: *Tetratheca erubescens* habitat on ironstone ridge face at the southern Koolyanobbing Range, with approximately 9 individuals identified by yellow arrows, with individuals in the lower part of the image depicting a “decumbent” form (Globe Environments 2014 unpublished).
2 Mitigation Hierarchy

As outlined by relevant Government guidance documents on environmental offsets (Government of Western Australia 2011, 2014; EPA 2014b), consideration should be given to the alignment of proposed action to the “Mitigation Hierarchy”. The Mitigation Hierarchy comprises sequential steps that seek to alleviate the environmental effect of a Proposal as far as practicable. The 4 sequential steps of the Mitigation Hierarchy are:

(a) Avoid;
(b) Minimise;
(c) Rehabilitate; and
(d) Offset.

A description of the sequential steps of the Mitigation Hierarchy, and an assessment of the steps taken for the Proposal in relation to the Tetratheca erubescens, is provided below.

2.1 Avoid

Avoidance measures seek to prevent or change the potential environmental effect of an action before the effect occurs. As an example, avoidance measures may include adjusting the location, scope and/or timing of an action.

The Proposal area for the Mine Pits coincides with part of the Tetratheca erubescens population. As the ore resource is fixed (and as such, the location of the Mine Pits is fixed), removal of part of the Tetratheca erubescens population by the Proposal is unavoidable.
2.2 Minimise

Minimisation measures seek to reduce the duration, intensity, extent and/or likelihood of the environmental effect of an action where such values cannot be completely avoided. As an example, minimisation measures may include adjusting the location, scope or timing of an action so as to result in a reduction in the expected environmental effect.

During mine planning, Cliffs has considered various mine planning layouts that seek to minimise the environmental effect of the Proposal, with specific consideration given to mine planning options that minimise the environmental effect to Tetratheca erubescens. As an outcome of this process, Cliffs has modified the optimal economic design of the Mine Pits so as to achieve a significant reduction to the environmental effect to the Tetratheca erubescens population. The optimal economic design (which is not proposed) would result in the removal of approximately 47% of the Tetratheca erubescens population. By comparison, the proposed design will remove up to approximately 15% of the Tetratheca erubescens population. Whilst the design modification outcome has resulted in a reduction in the recoverable ore resource, Cliffs has undertaken such modifications in recognition of the restricted size and distribution of the Tetratheca erubescens population, and with a view towards achieving an appropriate balance between resource development and its environmental effects.

2.3 Rehabilitate

Rehabilitation measures seek to restore environmental values following an action. As an example, rehabilitation measures may include restoration of soils and vegetation following an action.

Following the completion of mining, the Mine Pits will be left as open voids. Consistent with normal mining practices, the Mine Pits will not be subject to broad-scale rehabilitation as the steep sides and consolidated rock structures are generally not conducive to successful rehabilitation. Whilst noting this, the Mine Pits may provide potentially suitable habitat for targeted restoration of Tetratheca erubescens (as part of an offsets plan, refer below).

The potential for restoration of Tetratheca erubescens may also be possible within retained parts of the southern Koolyanobbing Range, either through the establishment of new locations or supplementation of individuals within existing locations (as part of an offsets plan, refer below).

2.4 Offsets

Environmental offsets are measures that seek to counterbalance any significant residual environmental effects which may arise from an action, after appropriate avoidance, minimisation and rehabilitation measures have been taken. In principle, an environmental offset should be related to the significant residual environmental effect, and should seek to achieve a measurable conservation outcome(s). As an example, where a significant residual environmental effect relates to a flora or fauna taxon, an environmental offset should seek to achieve a measurable conservation outcome(s) for that flora or fauna taxon.

A description of the environmental offsets proposed by Cliffs for the Proposal are outlined in Section 3 Environmental Offsets.
3 Environmental Offsets

3.1 Proposed Offsets

Cliffs proposes to develop and implement a five-year Tetratheca Restoration Project. The Tetratheca Restoration Project will have a focus on the development of restoration techniques and their application in the establishment of new individuals of *Tetratheca erubescens* in the field.

The project will also have the strategic aim of developing methods that have wider application to Tetratheca taxa of the southern Yilgarn. A number of related Tetratheca taxa occur on banded iron formation ranges across the region. These taxa share many biological and ecological characteristics and, likewise, their distributions are restricted to single banded iron formation ranges. The body of research and translocation trials completed by Cliffs for *Tetratheca paynterae* subsp. *paynterae* at the Windarling Range provides a useful basis from which to extend the work to *Tetratheca erubescens* and other Tetratheca species. Propagation and translocation techniques developed for both *Tetratheca erubescens* and *Tetratheca paynterae* subsp. *paynterae* can be expected to have wider application. A final output of the project will be a Tetratheca restoration manual with potential application to the suite of Yilgarn Tetrathecas.

3.2 Objectives

The objective of the environmental offset will be to develop and implement a Tetratheca Restoration Project with the following objectives:

(a) To develop technologies and methods to support the restoration of *Tetratheca erubescens*.

(b) To demonstrate proof-of-concept for field translocations of *T. erubescens* as an early project milestone.

(c) To undertake full-scale field restoration/translocations of *T. erubescens* following the development of restoration technologies and methods. As a guide, the field translocations would aim to establish a greater number of new *T. erubescens* than are removed by mining.

(d) To achieve functional attributes within restored/translocated populations similar to those of natural populations.

Although the primary focus will be on *Tetratheca erubescens*, the scope will include other Tetratheca species occurring on banded iron formation ranges in the southern Yilgarn region where feasible.
3.3 Alignment to Policy

Cliffs’ proposed environmental offset to develop and implement a Tetratheca Restoration Project aligns to the WA Environmental Offsets Policy (Government of Western Australia 2011) in that it:

a) Relates to the environmental value that is being affected i.e. the project will aim to establish new *Tetratheca erubescens* individuals in the field;

b) Will be based on sound environmental information and science i.e. the project will build upon work undertaken on the related taxon *Tetratheca paynterae ssp. paynterae* and involve a program of research designed to understand and refine restoration techniques prior to larger scale translocation attempts.

c) Will be focused on longer term strategic outcomes i.e. the project will aim to provide knowledge and methods suitable for application to future translocations and management of *Tetratheca erubescens* and, additionally, provide methods applicable to other restricted Tetratheca species in the region.

3.4 Schedule

Cliffs proposes that the implementation of the Tetratheca Restoration Project be undertaken over a period of up to 5 years, as outlined by Table 3-1. The environmental offset would be expected to commence immediately following the granting of approvals for the Proposal.

<table>
<thead>
<tr>
<th>Year</th>
<th>Action</th>
<th>Target Outcome</th>
</tr>
</thead>
</table>
| Year 1 | Seed collection and germination testing.
| | Review relevant Tetratheca restoration knowledge and address any critical translocation knowledge gaps.
| | Commence proof-of-concept translocations e.g. seed pre-treatments, seedling production, refine methods. | Obtain adequate viable seed for proof-of-concept translocations.
| | Proof-of-concept translocation design and implementation plan.
| | Initial assessment of results of proof-of-concept translocations. | |
| Year 2 | Ongoing seed collection and germination testing.
| | Monitor proof-of-concept translocations.
| | Refinement/testing of restoration techniques. | Implementation of proof-of-concept translocations.
| | Assessment of results of proof-of-concept translocations. | |
| Year 3 | Ongoing seed collection and germination testing (including other Tetratheca species).
| | Further refinement/testing of restoration techniques (including other Tetratheca species). | Ongoing assessment of results. |
| Year 4 | Broad-scale field translocations. | |
| Year 5 | Assess translocation results.
| | Tetratheca restoration manual. | |

Table 3-1 Tetratheca Restoration Project Schedule.
3.5 Governance

It is envisioned that through conditions imposed in approval of the Proposal under the Environmental Protection Act 1986 (WA), Cliffs will be required to provide financial and other resources to enable the execution of the Tetratheca Recovery Project.

3.6 Finance

A financial contribution of $1.2M, plus in-kind contributions, is envisaged over a five-year time frame.

<table>
<thead>
<tr>
<th>Year</th>
<th>Action</th>
<th>Estimated Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Seed collection and germination testing. Review relevant Tetratheca restoration knowledge and address any critical translocation knowledge gaps. Prepare for proof-of-concept translocations e.g. seed pre-treatments, seedling production, refine methods.</td>
<td>$400,000</td>
</tr>
<tr>
<td>Year 2</td>
<td>Ongoing seed collection and germination testing. Undertake proof-of-concept translocations. Refinement/testing of restoration techniques.</td>
<td>$250,000</td>
</tr>
<tr>
<td>Year 3</td>
<td>Ongoing seed collection and germination testing (including other Tetratheca species). Further refinement/testing of restoration techniques (including other Tetratheca species).</td>
<td>$150,000</td>
</tr>
<tr>
<td>Year 4</td>
<td>Broad-scale field translocations.</td>
<td>$250,000</td>
</tr>
<tr>
<td>Year 5</td>
<td>Assess translocation results. Document restoration techniques.</td>
<td>$150,000</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>$1,200,000</td>
</tr>
</tbody>
</table>

Table 3-2 Tetratheca Restoration Project Financial Provisions.

3.7 Risk Management

The Tetratheca Restoration Project will consider and address potential risks.

A key potential risk for the management actions associated with the implementation of the project is the availability of seed, with the annual availability of seed. This risk can be minimised by:

a) Collection of soil-stored seed from around the base of plants using vacuum methods.
b) Regular seed collections directly from plants and/or using nets placed under plants.
c) Storage of collected seed at optimal conditions (using the results of Tetratheca paynterae ssp. paynterae research as a guide).

As restoration works have not previously been attempted for Tetratheca erubescens, there is risk that the outcomes of the on-ground translocations will not meet expectations. Whilst previous restoration trials on the related flora taxon Tetratheca paynterae ssp. paynterae at the Windarling...
Range have confirmed the potential to successfully translocate individuals of the *Tetratheca* genus, the ability to achieve success with translocation of *Tetratheca erubescens* is untested. It should be noted that the take of *Tetratheca erubescens* by mining at F deposit would be restricted to less than 5% of total *Tetratheca erubescens* numbers unless proof-of-concept for the establishment of new individuals in the field can be demonstrated. Hence the environmental values to be offset would be of a relatively small magnitude. Regardless, the outcomes of the on-ground restoration works are not yet known and present a potential risk to the value of the environmental offset. The development of potential contingency options (if early targets are not achieved) will be embedded in a review process to form part of the project plan.

3.8 Monitoring

Detail of the monitoring program would be developed as part of the Tetratheca Restoration Project. Success criteria, and the methods for monitoring and assessment against such criteria will be defined.

It is anticipated that success criteria for the early proof-of-concept phase of the project will focus on successful germination and establishment of juvenile plants in the field, and an assessment of their likelihood of persistence in the longer-term. Subsequent monitoring would focus on how well functional attributes of restored/translocated populations resemble those of natural populations.

3.9 Reporting

Table 3-3 identifies the proposed reporting to be provided by Cliffs for the preparation and implementation of the Tetratheca Restoration Project.

It is envisioned that the reporting would include both an annual progress report and a final report, each outlining the progress of the research priorities and the outcomes of the restoration works.

Consistent with the standard expectations for environmental offsets, the annual and final reports would be made publicly available.

<table>
<thead>
<tr>
<th>Year</th>
<th>Action</th>
<th>Submission to</th>
<th>Public Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Annual Progress Report</td>
<td>EPA/DPaW</td>
<td>Yes</td>
</tr>
<tr>
<td>Year 2</td>
<td>Annual Progress Report</td>
<td>EPA/DPaW</td>
<td>Yes</td>
</tr>
<tr>
<td>Year 3</td>
<td>Annual Progress Report</td>
<td>EPA/DPaW</td>
<td>Yes</td>
</tr>
<tr>
<td>Year 4</td>
<td>Annual Progress Report</td>
<td>EPA/DPaW</td>
<td>Yes</td>
</tr>
<tr>
<td>Year 5</td>
<td>Final Report</td>
<td>EPA/DPaW</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 3-3 Tetratheca Restoration Project Reporting Schedule.
4 Stakeholder Consultation

Stakeholder consultation is an integral component of Cliffs’ planning, assessment and development processes. During the planning and assessment for the Proposal undertaken to date, Cliffs has consulted with a range of stakeholders, as outlined below.

4.1 Environmental Protection Authority / Office of the EPA

In November 2014, a meeting was held with representatives for OEPA (M Jefferies, K Carter, L Jacenko, J Sheppard) and Cliffs (R Howard, S Hawkins) to discuss potential environmental offsets for Tetratheca erubescens. The meeting discussed Cliffs’ proposed approach for aligning potential environmental offsets for Tetratheca erubescens with DPaW’s Recovery Plan framework, with agreement for Cliffs to subsequently present its proposed environmental offsets to EPA within an Environmental Offsets Plan for OEPA consideration.

In December 2014, Cliffs provided OEPA (K Carter, L Jacenko, J Sheppard) with a draft Tetratheca erubescens Environmental Offsets Plan (Revision B) for consideration and comment. In December 2014, OEPA (L Jacenko) provided advice to Cliffs (S Hawkins) that the draft plan “provides a good framework for the application of offsets for the likely impacts to Tetratheca erubescens and at this framework level is likely to align with the principles of the WA Environmental Offsets Policy and WA Environmental Offsets Guidelines”. The OEPA advice also suggested some improvements to the draft Tetratheca erubescens Environmental Offsets Plan.

Further consultation with EPA/OEPA on this Tetratheca erubescens Environmental Offsets Plan has occurred following feedback received during the public comment stage of the environmental assessment of the EIA document.

The Tetratheca erubescens Environmental Offsets Plan has been modified significantly as a result of comments received and following modifications to the Proposal and further consultation with the OEPA.

4.2 Department of Parks and Wildlife

In December 2014, Cliffs provided DPaW (S Thomas, N Woolfrey, K Atkins, A Jones, J Futter) with a draft Tetratheca erubescens Environmental Offsets Plan (Revision B) for consideration and comment. In December 2014, DPaW (S Thomas) advised Cliffs (S Hawkins) that consideration of the draft Tetratheca erubescens Environmental Offsets Plan would be undertaken in parallel with the assessment of this EIA-PER document.

Further consultation with DPaW on this Tetratheca erubescens Environmental Offsets Plan is expected as part of the environmental assessment of the Proposal under the Environmental Protection Act 1986 (WA) coordinated by EPA/OEPA, as well as through DPaW’s environmental assessment processes under the Wildlife Conservation Act 1950 (WA).

4.3 Community Consultation

This Tetratheca erubescens Environmental Offsets Plan formed part of the Environmental Impact Assessment (Public Environmental Review) (EIA-PER) document for the Proposal. The EIA-PER document was advertised and made available for public comment for a period of 4 weeks, during which the community had the opportunity to consider and comment on the proposed environmental offsets for the Proposal.
5 References

Cliffs Natural Resources Incorporated and Associated Companies (2014) Environmental Policy. October 2014.

Environmental Protection Authority (2014a) Environmental Protection Authority Weekly Record of Determinations for s38 Referrals, s16 and/or s46 Advice: Yilgarn Operations – Koolyanobbing Range F Deposit, approximately 50km north-east of town of Southern Cross, Shire of Yilgarn. Determination of the Chairman of the Environmental Protection Authority under Section 39A(1) of the Environmental Protection Act 1986 (WA). September 2014.

